HI97738 Chlorine Dioxide Photometer Hanna Instruments.
The HI83746 Photometer for Reducing Sugars in Wine combines accuracy and ease of use in an ergonomic, portable design. A user can accurately determine the concentration of reducing sugars in wine within a 0.00 to 50.0 g/L (ppt) range using the HI83746-20 ready-made reagents.
The HI83746 photometer is for the determination of reducing sugars in wine. Hanna’s photometers feature an advanced optical system; the combination of a special tungsten lamp, a narrow band interference filter, and silicon photodetector ensure accurate photometric readings every time. The exclusive cuvette locking system ensures that the cuvette is inserted into the measurement cell in the same position every time to maintain a consistent path length.
Application Notes
Sugar is an essential component in the production of wine. During alcoholic fermentation, yeast consume sugars found in the grape juice, or must, and converts it to ethyl alcohol and carbon dioxide. In the case of certain styles of wine such as semi-sweet or dessert wines, some sugar is allowed to remain post-fermentation. This residual sugar can serve to provide a sweeter character to the final blend or play a role in microbial stability.
The primary fermentable sugars found in grapes are glucose and fructose. These two simple sugars are also known as reducing sugars because they contain functional groups capable of being oxidized under certain conditions. After reaction with excess alkaline cupric tartrate (Fehling reagents), the content of reducing sugars can be determined colorimetrically. The Fehling method is not an exact determination but an index of the reducing sugar concentration, because the reaction depends upon the amount and type of reducing sugars present. When the reducing sugar content is known at the beginning of fermentation, the potential alcohol degree can be estimated by multiplying the sugar concentration (in g/L) by 0.06.
The HI83746 uses the Fehling method to determine the concentration of reducing sugars less than 50.00 g/L (ppt). When Fehling’s A and Fehling’s B Solutions react with a sample containing reducing sugars, the sample will undergo a color change; the greater the concentration, the deeper the color. The associated color change is then colorimetrically analyzed according to the Beer-Lambert Law. This principle states that light is absorbed by a complementary color, and the emitted radiation is dependent upon concentration. For determination of reducing sugars, a narrow band interference filter at 610 nm (orange) allows only orange light to be detected by the silicon photodetector and omits all other visible light emitted from the tungsten lamp. As the change in color of the reacted sample increases, absorbance of the specific wavelength of light also increases, while transmittance decreases.
HI83746 Photometer for Reducing Sugars in Wine
Download Catalog :
Description
HI97738 Chlorine Dioxide Photometer Hanna Instruments.
The HI83746 Photometer for Reducing Sugars in Wine combines accuracy and ease of use in an ergonomic, portable design. A user can accurately determine the concentration of reducing sugars in wine within a 0.00 to 50.0 g/L (ppt) range using the HI83746-20 ready-made reagents.
Kami PT. Alfa Omega Indolab merupakan distributor untuk alat-alat Laboratorium. Kami jual photometer HI83746 Hanna Instruments untuk analisa wine. Tersedia juga berbagai macam pH Meter Hanna Instrument dengan dukungan purna jual prima sehingga memberikan kenyaman kepada user. Melayani pengiriman ke seluruh kota di Indonesia. Temukan produk-produk kami yang lain untuk melengkapi kebutuhan Laboratorium Anda. Berikut beberapa alat ukur penting untuk uji kualitas air : pH Meter Hanna Instruments, TDS Meter, DO Meter, Photometer, COD Meter, Turbidity Meter, Conductivity Meter, Salinity Meter, ORP Meter, ISE Meter, Refractometer, Thermometer, Chemical Test Kit, dll. Hanna Instrument fokus memproduksi alat ukur kualitas air, sehingga sangat menjaga mutunya.
General Specification
The HI83746 photometer is for the determination of reducing sugars in wine. Hanna’s photometers feature an advanced optical system; the combination of a special tungsten lamp, a narrow band interference filter, and silicon photodetector ensure accurate photometric readings every time. The exclusive cuvette locking system ensures that the cuvette is inserted into the measurement cell in the same position every time to maintain a consistent path length.
Application Notes
Sugar is an essential component in the production of wine. During alcoholic fermentation, yeast consume sugars found in the grape juice, or must, and converts it to ethyl alcohol and carbon dioxide. In the case of certain styles of wine such as semi-sweet or dessert wines, some sugar is allowed to remain post-fermentation. This residual sugar can serve to provide a sweeter character to the final blend or play a role in microbial stability.
The primary fermentable sugars found in grapes are glucose and fructose. These two simple sugars are also known as reducing sugars because they contain functional groups capable of being oxidized under certain conditions. After reaction with excess alkaline cupric tartrate (Fehling reagents), the content of reducing sugars can be determined colorimetrically. The Fehling method is not an exact determination but an index of the reducing sugar concentration, because the reaction depends upon the amount and type of reducing sugars present. When the reducing sugar content is known at the beginning of fermentation, the potential alcohol degree can be estimated by multiplying the sugar concentration (in g/L) by 0.06.
The HI83746 uses the Fehling method to determine the concentration of reducing sugars less than 50.00 g/L (ppt). When Fehling’s A and Fehling’s B Solutions react with a sample containing reducing sugars, the sample will undergo a color change; the greater the concentration, the deeper the color. The associated color change is then colorimetrically analyzed according to the Beer-Lambert Law. This principle states that light is absorbed by a complementary color, and the emitted radiation is dependent upon concentration. For determination of reducing sugars, a narrow band interference filter at 610 nm (orange) allows only orange light to be detected by the silicon photodetector and omits all other visible light emitted from the tungsten lamp. As the change in color of the reacted sample increases, absorbance of the specific wavelength of light also increases, while transmittance decreases.
Related products
HI83308 Water Conditioning Photometer Hanna Instruments
HI96748 Manganese Low Range Portable Photometer
HI97726 Nickel Photometer Hanna Instruments